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Abstract 

Debugging complex software systems is a major problem. Proving properties of software systems 
can be thought of as a debugging tool. If a system S must satisfy property P but we can prove 
that it does not, then S has bugs in it. On the other hand, if S is proved to satisfy P then this is 
just a confirmation that a certain aspect of S is correct. 
We can prove properties of software systems at any stage of development. If we do these proofs 
early in the design stage, we can prevent errors from propagating to later development stages and 
therefore save time, money, and human effort. 
The traditional approach to proving properties of software systems is theorem proving. This ap- 
proach has several pragmatic drawbacks. The size of the programs that we can prove correct is not 
very large. Theorem proving must be done by highly skilled experts in the field. 
Our approach to proving properties of software systems is model checking, which consists of proving 
the property by automatically checking every state in the system. Model checking is a technique 
successfully used in hardware verification. The model checking tool we use is SMV, which takes as 
input a finite state machine (FSM) and a property P expressed in Computation Tree Logic (CTL) 
and outputs true if the FSM satisfies P or false otherwise. If the outcome is false then SMV also 
outputs a counterexample. 
Because software systems are not, in general, finite state machines, model checking seems to be 
inadequate at first glance. However, we can overcome this problem by abstracting the system and 
checking a finite model of it. 
We use this method to check cache coherence protocols for distributed systems. The protocols we 
use are those of the Andrew File System and the Coda File System. We check a cache coherence 
invariant on the specifications of these protocols, which are natural abstractions of the systems. We 
perform other abstractions to reduce the size of the systems to manageable finite state machines. 
SMV checked our cache coherence invariant successfully and indicated that the protocol specifica- 
tions satisfy this property. For our most complicated protocol, SMV took less than 1 second to 
check a finite state machine with over 43,600 reachable states. 



1.    Introduction 

Software systems are becoming more and more complex and debugging them is a major problem. 
Proving properties of software systems can be thought of as a debugging tool. If a system S must 
satisfy property P but we can prove that it does not, then S has bugs in it. On the other hand, if 
S is proved to satisfy P then this is just a confirmation that a certain aspect of S is correct. 

We can prove properties of software systems at any stage of development. If we do these proofs 
early in the design stage, we can prevent errors from propagating to later development stages and 
therefore save time, money and human effort. 

The traditional approach to proving properties of software systems is theorem proving. Software 
systems are, in general, infinite state machines and theorem proving is appropriate because we rely 
on induction to prove properties in an infinite domain. However, this approach has pragmatic dis- 
advantages. The size of programs about which we can prove properties is not very large. Theorem 
proving must be done by highly skilled experts in the field and it usually takes a considerable 
amount of time. 

Our approach to proving properties of software systems is model checking, which consists of 
proving the property by automatically checking every state in the system. Model checking is a 
technique successfully used in hardware verification. Recent technology advances, like the use of 
Binary Decision Diagrams (BDD), have allowed considerable improvements in this domain. Model 
checkers can now verify systems with over 1020 states. Examples of recent case studies in the 
hardware domain are the verification of aspects of the Encore Gigamax multiprocessor [7] and the 
IEEE Futurebus+ Standard [2]. In both of these case studies the authors discovered significant 
bugs in the systems. 

We use McMillan's model checking tool SMV [6] which takes as input a finite state machine 
(FSM) and a property P expressed in Computation Tree Logic (CTL) and outputs true if the FSM 
satisfies P or false otherwise. If the outcome is false then SMV also outputs a counterexample 
which allows users to understand why the system does not satisfy the property. 

Because software systems are not, in general, finite state machines, model checking seems to be 
inadequate at first glance. However, we can overcome this problem by abstracting the system and 
checking a finite model of it. 

In this paper, we consider model checking cache coherence protocols for two distributed file 
systems, the Andrew File System (AFS) and the Coda File System. Mummert, Wing and Satya- 
narayanan derived abstract models of these protocols [9]. They also specified a cache coherence 
invariant (CC). 

Our goal is to check whether these models satisfy CC, using SMV. For this goal, we perform 
certain application-specific abstractions to reduce the size of the corresponding SMV input pro- 
grams. 

We consider four models AFSO, AFS1, AFS2 and Coda+. AFSO is a simple model on which all 
the others are based. Models for AFS1 and AFS2 were defined by Mummert et al. [9]. Coda+ is 
the version of the cache coherence protocol for Coda developed by Mummert and Satyanarayanan 

[8]. 



Section 2 presents these models and CC. Section 3 describes the SMV input language by giving 
a simple example. Section 4 presents details of the verification of the four models. Section 5 is a 
discussion of the abstractions we performed and the general method we used to transform models 
into SMV programs. Finally, Section 6 is an overview of related work and Section 7 is a summary 

of our conclusions. 

2.     Cache Coherence Protocols for Distributed Systems 

When connectivity and bandwidth are low in a distributed system, caching of data by clients plays 
an important role. Caching is also helpful when temporary failures occur. A problem arises when 
there are several copies of a file in a system. If a client updates its own copy then all other copies 
of that file become invalid. The goal of cache coherence protocols is to address this problem. 

A cache coherence protocol specifies the behavior of clients and servers in a distributed system. 
Servers are the authority on files that may be cached by clients. Clients and servers communicate 
by sending messages to each other. Clients can only send messages to servers. These messages 
contain files or information about files, like their validity. A run of the protocol is an exchange 

of messages between clients and servers. Validity is determined using recency. The most recent 
version of a file is valid, all other versions are invalid. Recency is determined by a timestamp. 

In the models of cache coherence protocols we consider, there is only one server, one client and 
one file [9]. There is no global knowledge about the validity of the file. However, the client and 
the server have beliefs about its validity. They also have beliefs about the presence of the file in 
the client's cache. Before each run, the client has no belief about the validity of its file (if it has 
one), and the server has no belief about the validity of the client's file. During a run, the client 
and server exchange messages and change their beliefs. The details of the four models are further 

described in Section 4, including a description of how the runs end. 

The CC invariant property defined by Mummert, Wing and Satyanarayanan is 

"If a client believes that a cached file is valid, 
then the server also believes that the client's file is valid." 

3.     Symbolic Model Checking 

In this section, we present a simple example to illustrate the SMV input language.  Consider the 

program presented in Figure 1. Assume that -5 < n < 5. 

For this program we check the property 

"The program terminates" 

This property can be expressed in CTL as 
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n := 3; 
finish := 0; 
while (n != 0) n : 
finish := 1; 

= n -  1; 

Figure 1: Simple Program 

Figure 2: State Diagram Example 

AF   (finish) 

In CTL, A means for all paths and F means in some future state along a path. So the formula 
expresses that along all paths, in some future state, the variable finish will be set to 1. 

Figure 2 represents the state diagram for this program. It consists of 11 states, one for each 
of the possible values of n. If we do not restrict the range of n then the state diagram is infinite. 
Figure 2 also shows the transitions between each of the states. There is a transition between each 
pair of states with values n and n', if n' = n — 1. 

The corresponding SMV input program is shown in Figure 3. One line 1, we declare the module 
main. Each SMV input program must have a module named main. The symbol — is used for 
comments. The variable n is declared to be an integer ranging from -5 to 5. finish is a boolean 
state variable used to detect termination of the program. 

The ASSIGN construct is used to define the initial values of the state variables as well as their 
next values. Thus the ASSIGN statement declares the state transitions of the system. On line 6, 
the initial value of n is set to 3. The next value of n is defined using a case statement. In each line 
of a case statement if the expression to the left of the colon is true then the whole statement gets 
the value of the expression to the right of the colon. If none of the lines contains a true condition 
then the statement gets the value to the right of 1 as shown on line 10. In this example, the next 
value of n is n - 1, if n is currently greater than -5, otherwise n retains its value. The next value 
of finish is also expressed using a case statement. If (n = 0) then we know that the loop must 
terminate and finish is set to 1, corresponding to finish = true. Finally the SPEC declaration 
(line 18) is used to declare, in CTL, the property to be checked by SMV. 

Figure 4 shows the output of SMV for this example. It indicates that our finite state machine 
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MODULE main -- while loop 
VAR 

n :  {-5,-4,-3,-2,-1,0,1,2,3,4,5}; 
finish : boolean; 

ASSIGN 
init(n) := 3; 
next(n) := 

case 
(n > -5)   :    n -  1; 
1   :    n; 
esac; 

init(finish)   := 0; 
next(finish)   := 

case 
(n = 0)   :     1; 
1   :    finish; 
esac; 

SPEC AF(finish) 

Figure 3: SMV input example 

satisfies the termination property, confirming the expected result that the program terminates with 
an initial value of 3. SMV also outputs some other information about the run. In particular, the 
user time is 0.1 seconds for this example and the number of reachable states is 9. 

If we change the initial value of n to -3, SMV indicates that the termination property does 
not hold, as expected. The output shown in Figure 5 also demonstrates a counterexample. SMV 
prints counterexamples by showing the values of the state variables in successive states, starting 
with an initial state. For this example, in the initial state (indicated by state 1.1), the value of 
n is -3 and the value of finish is 0. In the next states, the value of n decreases to -4 and then to 
-5. At state 1.3, SMV indicates that the system has reached a state it has encountered before, 
by printing the sentence loop starts here. Therefore the value of finish stays at 0 forever and 
there is no path in which it becomes 1. This proves that the termination property does not hold 

when the initial value of n is -3. 

—  specification AF finish is true 

resources used: 
user time:     0.1  s,  system time:     0.0833333 s 
BDD nodes allocated:     170 
Bytes allocated:     917504 
BDD nodes representing transition relation:     32+1 
reachable states:    9 (23-16993) out of 22 (2

4-45943) 

Figure 4: SMV output. The specification is true. 



— specification AF finish is false 
— as demonstrated by the following execution sequence 

state 1.1: 

n = -3 

finish = 0 

state 1.2: 

n = -4 

— loop starts here — 

state 1.3: 

n = -5 

state 1.4: 

resources used: 
user time:     0.1  s,   system time:     0.0833333 s 
BDD nodes  allocated:    533 
Bytes allocated:     917504 
BDD nodes representing transition relation:    32+1 
reachable states:    3 (21-58496) out of 22 (24-45943) 

Figure 5: SMV output. The specification is false 



nofile     ) A      valid     ) Client 

val 

valid      )       Server 
fetch 

Figure 6: Finite State Diagrams for AFSO 

4.    Distributed File System Examples 

The following sections describe the four examples that we have checked using SMV. In each case, 
we give the specification of the protocol, construct its finite state diagram, and describe the corre- 
sponding SMV input and output. 

4.1.    AFSO 

4.1.1.     Specification and State Diagrams for AFSO 

In this model, the client simply requests a copy of the file from the server. The server then sends 
a copy to the client. The server's belief about the file cached by the client ranges over {valid, 
none}. If the server's belief is valid then the server thinks that there is a file in the client's cache 
and it is valid; none, then the server has no belief about the existence of a file in the client's cache 
or its validity. 

The client's belief ranges over {valid, nofile}. The client's belief is valid if the client thinks 
that there is a file in its cache and it is valid; nofile if it believes that there is no file in its cache. 

The client and server communicate by sending messages to each other. These messages range 
over {fetch,val}. The message fetch is sent by the client to the server to request a new copy of 
the file. The message val is from the server to the client indicating that a copy of the file has been 
sent. 

In AFSO, the client's initial belief is nofile and the server's initial belief is none. The client 
sends a fetch message to the server. The server then sends a val message to the client. At the 
end of the run, both the client and the server believe that the file cached by the client is valid. 

Note that the actual file is not sent by the server in our model of the protocol. We assume that 
the file is sent along with the message val. 

Figure 6 represents the finite state diagrams for AFSO. The labels of the transitions are received 
messages. Upon receipt of the message val the client's belief changes from nofile to valid. 
Similarly, upon receipt of the message fetch, the server's belief changes from none to valid. 



4.1.2.    SMV Input Program and Output for AFSO 

Figure 7 represents the input program for AFSO. The property to be verified is the following: 

AG  ((Client.belief = valid)  ->   (Server.belief = valid)) 

The above CTL formula expresses our cache coherence invariant (CC): If the client believes that 
its file is valid, then the server also believes that the file cached by the client is valid. 

The SMV input program is composed of the modules main, client, and server. The module 
server takes a parameter input that can be any message coming from the client. The module 
starts with a VAR declaration that defines the belief of the server and its output (denoted by out), 
out ranges over {0, fetch} and denotes a message that the server sends to the client. The message 
0 stands for no message. The module server then declares the state transitions for each state 
variable using the ASSIGN declaration. The initial value of belief is none. Its next value is valid, 
if the current value of belief is none and the message fetch is received. The initial value of out is 
0, meaning that no message is sent. The next value of out is val, if the current value of belief is 
none and the message received is fetch. Recall that the server sends the actual copy of the file to 

the client while sending the message val. 

The module client also takes a parameter input that can be any message. The state variables 
belief and out are declared using again the VAR declaration. The out variable ranges over {0, 
fetch}. The ASSIGN declaration defines the state transitions for the state variables. The initial 
value of belief is nof ile. Its next value is valid if the current belief is nof ile and the message 
val is received. The initial value of out is 0. If the current value of belief is nof ile, its next value 

may be either 0 or fetch. 

The output of SMV (Figure 8) indicates that the cache coherence invariant holds for AFSO. 
The user time is 0.083 s and there are six reachable states in this example. 

4.2.    AFS1 

4.2.1.     Specification and State Diagrams for AFS1 

In AFS1, the client has two initial states: either it has no file or it has a file but no belief about 
its validity. If the protocol starts with the client having no file in its cache, then the client may 
request a copy from the server and the protocol terminates when the file is received by the client. 

If the protocol starts with the client having a suspect file (one for which it has no belief), then 
the client can request a validation from the server. If the file is invalid then the client requests a 
new copy and the run terminates. Otherwise, the protocol simply terminates. 

The client's belief about a file ranges over {nof ile,valid, suspect}. Its belief is nof ile if the 
client thinks that there is no file in its cache; valid if it thinks that there is a file in its cache and it 
is valid; suspect if it thinks that there is a file in its cache but it has no belief about the validity of 
the file. The server's belief about the file cached by the client ranges over {none,valid} as before. 



MODULE main —AFSO 

VAR 
Client :  client(Server.out); 

Server :  server(Client.out); 

SPEC AG ((Client.belief = valid) - > (Server.belief = valid)) 

MODULE server(input) 

VAR 
out :  {0, val }; 

belief :  { none, valid } ; 

ASSIGN 

init(belief) := none; 

next(belief) := 
case 
(belief = none) & (input = fetch) : valid; 

1 : belief; 

esac; 

init(out) := 0; 

next(out) := 

case 

(belief = none) & (input = fetch) : val; 

1 :  0; 

esac; 

MODULE client(input) 

VAR 

out :  { 0, fetch }; 
belief :  { valid, nofile }; 

ASSIGN 

init(belief) := nofile; 

next(belief) := 

case 

(belief = nofile) & (input = val) : valid; 

1 : belief; 

esac; 

init(out) := 0; 

next(out) := 

case 
(belief = nofile) :  { 0,fetch }; 

1 :  0; 

esac; 

Figure 7: SMV input program for AFSO 



~ specification AG (Client.belief = valid -> Server.beli. . .  is true 

resources used: 

user time:  0.0833333 s, system time: 0.116667 s 

BDD nodes allocated: 94 

Bytes allocated: 917504 

BDD nodes representing transition relation: 24+1 

reachable states: 6 (22-58496) out of 16 (24) 

Figure 8: SMV output for AFSO 

Client 

val or inval 

none 
fetch 

valid      )       Server 

or (validate & valid_file =1) 

Figure 9: Finite State Diagrams for AFS1 

The messages that the client sends to the server range over { 0, fetch, validate}. As with 
AFSO, the message 0 stands for no message and fetch stands for a fetch request. The message 
validate is used by the client to validate an existing file in its cache. 

The messages that the server sends to the client range over {0, val,inval}. The messages 0 
and val have the same meanings as in AFSO; inval is used by the server to indicate to the client 

that its cached file is not valid. 

Figure 9 shows the finite state diagrams for AFS1. 

4.2.2.     SMV Input Program and Output for AFS1. 

Figure 10 shows the SMV input program for AFS1. The SMV input program for AFS1 is 
organized in the same way as the one for AFSO. The modules are main, server, and client. The 
main module in AFS1 is identical to the one for AFSO. The property we check for AFS1 is our 
cache coherence invariant CC. 

In the module server, the state variables are out, belief and valid-file. The variables out 
and belief play the same role as before, valid-file is a boolean variable used by the server 
to decide about the validity of a file cached by the client. The server uses this variable when the 



MODULE main 

VAR 

Client :  client (Server.out); 

Server :  server (Client.out); 

SPEC AG ((Client.belief = valid) -> (Server.belief = valid)) 

SPEC AG ((Server.belief = valid) -> (Client .belief = valid)) 

MODULE server(input) 

VAR 

out :  {0, val, inval }; 

belief :  { none, valid,invalid }; 

valid-file : boolean; 

ASSIGN 

valid-file := { 0,1 }; 

init(belief) :=none; 

next(belief) := 

case 
(belief = none) & (input = fetch) : valid; 

(belief = none) & (input = validate) & valid-file : valid; 

(belief = none) & (input = validate) & !valid-file :  invalid; 

(belief = invalid) & (input = fetch) : valid; 

1 : belief; 

esac; 

init(out) := 0; 

next(out) := 
case 
(belief = none) & (input = fetch) : val; 

(belief = none) & (input = validate) & valid-file : val; 

(belief = none) & (input = validate) & !valid-file :  inval; 

(belief = invalid) & (input = fetch) : val; 

1 :  0; 

esac; 

MODULE client(input) 

VAR 

out :{ 0, fetch, validate}; 

belief :  { valid, invalid, suspect, nofile}; 

ASSIGN 
init(belief) := { nofile, suspect }; 

next(belief) := 
case 

(belief = nofile) & (input = val) : valid; 

(belief = suspect) & (input = val) : valid; 

(belief = suspect) & (input = inval) :  invalid; 

(belief = invalid) & (input = val) : valid; 

1: belief; 

esac; 

SMV input program for AFS1. Figure continues on next page. 
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init(out) := 0; 

next(out) 

case 

(belief = nofile) : fetch; 

(belief = invalid) fetch; 

(belief = suspect) validate; 

1 :  0; 

esac; 

Figure 10: SMV Input Program for AFS1. 

--  specification AG  (Client.belief = valid -> Server.beli. . .     is true 

resources used: 
user time:     0.05 s,  system time:     0.133333 s 
BDD nodes allocated:    419 
Bytes allocated:     917504 
BDD nodes representing transition relation:     112 +  1 
reachable states:     26 (24-70044) out of 216 (27-75489) 

Figure 11: SMV Output for AFS1 

client has a suspect file in its cache and requests a validation from the server. In the module server, 
valid-file is non-deterministically set to 0 or 1. If it is set to 1 then the server thinks that the 
file is valid. Otherwise the server believes that the file is invalid. The initial belief of the server is 

none; its final belief is valid. 

In the module client, the state variables are out and belief and play the same role as in 
AFSO. The client's initial belief is nofile or suspect. If its initial belief is suspect and the client 
receives a failed validation message, then the client believes its file is invalid. It then sends a 
fetch message to the server, as indicated in the definition of the transitions for out. The client's 

final belief is valid. 

Figure 11 shows the output of SMV for AFS1. SMV indicates that the cache coherence invariant 
is satisfied. The user time is 0.05 s and the number of reachable states is 26. 

If we checked the converse of the cache coherence invariant: 

AG  ((Server.belief = valid)  ->   (Client .belief = valid)), 

we would get the output shown in Figure 12. Intuitively, this new property should be false as 
illustrated in the following scenario. Initially, the client has no file in its cache and requests a file 
from the server. The server receives this request, sends a copy to the client and changes its belief 
to valid. However the client has not received the file yet, so its belief is not valid. This situation is 

a counterexample for the property above. 

The SMV output represented in Figure 12 gives this counterexample. In state 1.1 the client's 
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— specification AG (Server.belief = valid - > Client.beli...  is false 

— as demonstrated by the following execution sequence 

state 1.1: 

Client.out = 0 

Client.belief = nofile 

Server.out = 0 
Server.belief = none 

Server.valid-file = 0 

state 1.2: 

Client.out = fetch 

state 1.3: 
Server.out = val 

Server.belief = valid 

resources used: 
user time: 0.116667 s, system time: 0.116667 s 

BDD nodes allocated:  1019 

Bytes allocated: 917504 
BDD nodes representing transition relation:  112 + 1 

reachable states: 26 (24-70044) out of 216 (27-75489) 

Figure 12: SMV Output for AFS1 
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belief is nof ile and the server's belief is none. In the next state, the client does a fetch request. 
This is indicated by Client.out = fetch. In state 1.3, the server receives this message and 
sends the val message to the client. At the same time, the server's belief becomes valid. However 
in this state the belief of the client is still nof ile. This proves that the second property is false. 

4.3.    AFS2 

4.3.1. Specification and Finite State Diagrams for AFS2 

For AFS2, we consider one server, two identical clients (Client 1 and Client2) and one file. In this 
model, clients have the capability of updating their files and failures may occur in the environment. 
The model is based on callbacks. When a client caches a valid file, the server promises to notify 
that client if the file is updated. This promise is called a callback [9]. 

The protocol works as follows. Initially, the clients may have one of two beliefs. A client either 
believes it has no copy of the file or it has a suspect copy. If the initial belief of a client is that it 
has no file, it may request a copy from the server. The server then has a callback on that file. If 
the file is ever updated, the server notifies the client and the client discards its copy. 

If the initial belief of a client is that there is a suspect file in its cache, it may request a validation 
from the server. If the file is valid, then the server has a callback on that file. If the file is invalid 
the client discards its copy. 

If, at any time during a run, a failure occurs in the system, the clients hold their copies of the 
file suspect and the server discards its beliefs about the validity and the existence of the files cached 
by the clients. 

The server's belief about the file cached by Clientl (Client2) is belief 1 (belief 2). Each of the 
server's beliefs ranges over {valid, nocall}. The belief valid has the same meaning as before. 
The belief nocall indicates that the server has no callback on the file cached by the client. 

Each client's belief about the file in its cache ranges over {valid, suspect,nof ile}. These 
beliefs have the same meaning as in the AFS1 model. Note that a client discards any file that it 
believes to be invalid. For this reason we have chosen not to represent the belief invalid. 

The clients may send the following messages to the server {fetch, validate,update}. An 
update message indicates to the server that the file cached by the client has been updated. The 
server's messages to the clients are the same as before {val,inval}. 

Figure 13 gives the finite state diagrams for AFS2. 

4.3.2. SMV Input Program and Output for AFS2 

The cache coherence invariant holds for AFS2 only within certain timing constraints because of 
transmission delay. Consider the following scenario. Clientl has a valid file in its cache and the 
server has a callback on that file. Client2 suddenly updates its copy of the file. Then the server 
immediately believes that the file cached by Clientl is not valid and sends a message to Clientl to 
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Client 

fetch ^      ^   failure 

none     ) +4      v^y      ) *\    nocall     J Server 

or (validate & valid_file = 1) 

Figure 13: Finite State Diagrams for AFS2 

notify it. In this state, Client 1 has not yet received the server's message and it still believes that 
its file is valid. So the invariant does not hold. However if T represents the upper bound on the 
transmission delay, then the following property is true: 

If a client believes its file is valid at the present time, then at the instant 
of time right before an interval of time T in the past, the server must have 
believed that the copy of the client is valid. 

In CTL, there are no operators about the past. So this property must be formulated using its 
contrapositive. The transmission delay is modeled by the amount of time its takes to go from one 
state to another. This leads us to the following CTL formula: 

AG  ((Server.belief 1 = nocall)  - > 
AX  ((Clientl.belief = nofile)   |   (Clienti.belief = suspect))) 

In CTL, AX means invariably in the next state. 

Figure 14 gives the input program for AFS2. The program consists of instances of modules 
Clientl, Client2, Server and Env. The env module represents the environment and causes 
failures to occur between Clientl and the Server and between Client2 and the Server. It has 
two state variables, f ailurel and f ailure2. Each one of them can be independently set to 1. 
Once a variable is set to 1, it remains at that value for the rest of the run. 

The module client works exactly in the same way as in AFS1. The only difference is that in 
AFS2 a client may also send an update message to the server when it believes its file is valid. The 
last line in the definition of out in the client module captures this difference. 

The module server now has two beliefs as noted before, belief 1 and belief2. The server in 

AFS2 works in a similar way to the server module in AFS1. 
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MODULE main 

VAR 
Clientl :  dient (Server.outl, Env.failurel); 

Client2 :  client (Server.out2, Env.failure2); 

Server :  server (Clientl.out, Client2.out, Env.failurel, Env.failure2); 

Env :  env; 
SPEC AG ((Server.belief1 = nocall) -* AX ((Clientl.belief = nofile) | (Clientl.belief = susp' 

SPEC AG ((Clientl.belief1 = valid) -> (Server.belief 1 = valid)) 

MODULE server(input1, input2, failurel, failure2) 

VAR 

{ 0, val, inval }; 
{ 0, val, inval }; 

:  { valid, nocall }; 
:  { valid, nocall }; 

boolean; 
boolean; 

outl : 
out 2 : 

beliefl : 
belief2 : 

validFilel 
validFile2 

ASSIGN 

validFilel 

validFile2 

init(belief1) 

next(beliefl) 

:= { 0,1 }; 

:= { 0,1 }; 
:= nocall; 

case 

failurel : nocall; 

(beliefl = nocall) & 
(beliefl = nocall) & 

(beliefl = nocall) & 

(beliefl = valid) & 

1 : beliefl; 

esac; 

(inputl = fetch) : 
(inputl = validate) 

(inputl = validate) 

(input2 = update) : 

valid; 
& validFilel : valid; 

& !validFilel nocall; 

nocall; 

init(outl) := 0; 
next(outl) := 

case 

failurel :  0; 
(beliefl = nocall) & (inputl = fetch) : val; 

(beliefl = nocall) & (inputl = validate) & validFilel : val; 

(beliefl = nocall) & (inputl = validate) & !validFilel inval; 

(beliefl = valid) & (input2 = update) :  inval; 

1 • o- 
esac; 

init(belief2) := nocall; 

next(belief2) := 

case 
failure2 : nocall; 

(belief2 = nocall) & 

(belief2 = nocall) & 

(belief2 = nocall) & 

(belief2 = valid) & 
1 :  beliefs'.: 

(input2 = fetch) : 

(input2 = validate) 

(input2 = validate) 

(inputl = update) : 

valid; 

& validFile2 :  valid; 

& !validFile2 : nocall; 

nocall; 



init(out2) 

next(out2) 
0; 

case 
failure2 

(belief2 

(belief2 

(belief2 

(belief2 

1 : 0; 

esac; 

MODULE client(input, failure) 

VAR 
out :{ 0, fetch, validate, update }; 

belief :  {valid, suspect, nofile }; 

ASSIGN 
:= {nofile, suspect }; 

0; 
nocall) & (input2 = fetch) : val; 

nocall) & (input2 = validate) & validFile2 : 

nocall) & (input2 = validate) & !validFile2 
valid) & (inputl = update) : inval; 

val; 

inval; 

init(belief) 
next(belief) 

init(out) 

next(out) 

case 

(belief 

(belief 
(belief 
(belief = valid) & failure 
(belief = valid) & (input = inval) : nofile; 

1: belief; 

esac; 

0; 

nofile) & (input = val) : valid; 

suspect) & (input = val) : valid; 
suspect) & (input = inval) :  nofile; 

suspect; 

case 

(belief 

(belief 

(belief 

1 : 0; 

esac; 

nofile) :  { fetch, 0 }; 
suspect) :  { validate, 0 }; 

valid) : update; 

MODULE env 

VAR 
failurel : boolean; 

failure2 : boolean; 

ASSIGN 
init(failurel) := 0; 

next(failurel) := 
case 

!failurel 

1 :  1; 
esac; 

init(failure2) := 0; 

next(failure2) := 

case 

!failure2 

1 :  1 : 

{ 0,1 }; 

{ 0,1 }; 
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-- specification AG  (Server.belief 1 = nocall -► AX  (Clien...     is true 
resources used: 
user time:     2 s,  system time:     0.2 s 
BDD nodes allocated:    9742 
Bytes allocated:     1048576 
BDD nodes representing transition relation:     3710 +  1 
reachable states:    7776 (212-9248) out of 82944 (216-3399) 

Figure 15: SMV Output for AFS2 

Figure 15 gives the output for AFS2. SMV indicates that the finite state machine for AFS2 
satisfies our cache coherence invariant. The number of reachable states for AFS2 is 7776 and SMV 
takes 2 seconds to check it. 

4.4.     Coda+ 

4.4.1. Specification and Finite State Diagrams for Coda+ 

The Coda cache coherence protocol that we consider is the one defined by Mummert and Satya- 
narayanan [8]. We call this version of the protocol Coda+. For the Coda+ model, we consider one 
server, two identical clients, one file and one volume version number. A volume is a collection of 
files. Volume version numbers are cached by the clients in addition to files to reduce client-server 
communication [8]. A callback on a volume constitutes proof that all cached files in that volume 
are valid. Coda+ works in the same way as AFS2 does, with the exception that it also deals 
with version numbers. The server now has four beliefs, two for the files cached by the clients and 
two for their cached version numbers. A client also has two beliefs, one for its file and one for 
its volume version number. The messages sent to the server by the clients range over {Ff etch, 
Fvalidate,Fupdate,Vf etch,Vvalidate,Vupdate}. Messages starting with a V ( F ) relate to the 
version numbers ( to the files). The messages that the server sends to the clients range over 
{Fval,Finval, Vval,Vinval}. 

Figure 16 gives the finite state diagrams for Coda+. 

4.4.2. SMV Input Program and Output for Coda+ 

Figure 17 gives the input program for Coda+. The property we check is the same as the one 
for AFS2. It expresses the contrapositive of our cache coherence invariant and takes into account 
transmission delay. 

Instances of modules in Coda+ are Server, Client 1, Client2 and Env. The module env is 
identical to the one in AFS2. The server now has four beliefs, about the validity of the files and 
volume version numbers cached by Clientl and Client2. These beliefs can take the values valid 
and nocall. Note that again the server does not have an invalid belief. 

Each of the clients has two beliefs. One belief is about the validity of the file and ranges over 
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Client 

Vvalidate & IvalidFV 

Vvalidate & 
ivalidFV 

Fvalidate & 
IvalidFV 

Vvalidate & 
validFV 

Server 

*:Vvalidate  & 
validFV 

Vfetch 

Figure 16: Finite State Diagrams for Coda+. In each circle, the first word represents a belief about 
the file and the second word represents a belief about the version number. 
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MODULE main 

VAR 
Clientl :  client (Server.outl, Env.failurel); 

Client2 :  client (Server.out2, Env.failure2); 

Server :  server (Client 1.out, Client2.out, Env.failurel, 

Env :  env; 
SPEC AG ((Server.Fbeliefl = nocall) - > AX ((Clientl.Fbelief 

MODULE server(input1, input2, failurel, failure2) 

VAR 
outl :  {0, Fval, Finval, Vval, Vinval}; 

out2 :  {0, Fval, Finval, Vval, Vinval}; 

Env.failure2); 

= nofile) | (Clientl.Fbelief 

Fbeliefl 

Fbelief2 

Vbeliefl 

Vbelief2 

validFVl 

validFV2 

ASSIGN 

validFVl := {0,1}; 

validFV2 := {0,1}; 

init(Fbeliefl) := nocall; 

next(Fbeliefl) := 

{valid, nocall} 

{valid, nocall} 

{valid, nocall} 

{valid, nocall} 

boolean; 

boolean; 

init(Fbelief2) 

next(Fbelief2) 

init(Vbeliefl) 

next(Vbeliefl) 

case 

failurel :  nocall; 
(Fbeliefl = nocall) & (inputl = Ffetch) : 

(Fbeliefl = nocall) & (inputl = Fvalidate) 

(Fbeliefl = nocall) & (inputl = Fvalidate) 

(Fbeliefl = valid) & (input2 = Fupdate) : 

1 :  Fbeliefl; 

esac; 

:= nocall; 

case 
failure2 :  nocall; 

(Fbelief2 = nocall) & (input2 = Ffetch) : 

(Fbelief2 = nocall) & (input2 = Fvalidate) 

(Fbelief2 = nocall) & (input2 = Fvalidate) 

(Fbelief2 = valid) & (inputl = Fupdate) : 

1 :  Fbelief2; 

esac; 

:= nocall; 

case 

failurel : nocall; 
(Fbeliefl = valid) & (Vbeliefl = nocall) & 

(Vbeliefl = nocall) & (inputl = Vvalidate) 

(Vbeliefl = nocall) & (inputl = Vvalidate) 

(Vbeliefl = valid) & (input2 = Fupdate) : 

(Vbeliefl = valid) & X|nput2 = Vupdate) : 
1   •     Wh*!   TQ-f 1 • 

valid; 

& validFVl :  valid; 

& !validFVl :  nocall; 

nocall; 

valid; 

& validFV2 :  valid; 

& !validFV2 : nocall; 

nocall; 

(inputl = Vfetch) :  valid; 

& validFVl : valid; 
& !validFVl :  nocall; 

nocall; 

nocall; 



init(Vbeli 

next(Vbeli 

ef2) 

ef2) 

init(outl) 

next(out1) 

init(out2) 

next(out2) 

:= nocall; 

case 

failure2 : nocall; 

(Fbelief2 = valid) I 
(Vbelief2 = nocall) 

(Vbelief2 = nocall) 

(Vbelief2 = valid) I 
(Vbelief2 = valid) I 
1 : Vbelief2; 

esac; 

0; 

case 
failure1 : 

(Fbeliefl 

(Fbeliefl 

(Fbeliefl 

(Fbeliefl 

(Fbeliefl 

(Vbeliefl 

(Vbeliefl 

(Vbeliefl 

(Vbeliefl 

1 : 0; 
esac; 

0; 

case 
failure2 : 

(Fbelief2 

(Fbelief2 

(Fbelief2 

(Fbelief2 

(Fbelief2 

(Vbelief2 

(Vbelief2 

(Vbelief2 

(Vbelief2 

1 : 0; 

esac; 

0; 
nocall) 

nocall) 

nocall) 

valid) I 
valid) I 
nocall) 

nocall) 

valid) I 
valid) I 

0; 
nocall) 

nocall) 

nocall) 

valid) i 

valid) & 
nocall) 

nocall) 

valid) i 
valid) I 

(Vbelief2 = nocall) & (input2 = Vfetch) : valid; 

:  (input2 = Vvalidate) & validFV2 : valid; 

: (input2 = Vvalidate) & !validFV2 : nocall; 

(inputl = Fupdate) : nocall; 

(inputl = Vupdate) : nocall; 

i (inputl = Ffetch) : Fval; 

i (inputl = Fvalidate) & validFVl :  Fval; 

'.  (inputl = Fvalidate) & !validFVl :  Finval; 

(input2 = Fupdate) : Finval; 

(Vbeliefl = nocall) & (inputl = Vfetch) : Vval; 

! (inputl = Vvalidate) & validFVl :  Vval; 

'.  (inputl = Vvalidate) & !validFVl :  Vinval; 

(input2 = Vupdate) : Vinval; 

(input2 = Fupdate) : Vinval; 

: (input2 = Ffetch) :  Fval; 

: (input2 = Fvalidate) & validFV2 :  Fval; 

: (input2 = Fvalidate) & !validFV2 :  Finval; 

(inputl = Fupdate) :  Finval; 

(Vbelief2 = nocall) & (input2 = Vfetch) : Vval; 

: (input2 = Vvalidate) & validFV2 :  Vval; 

:  (input2 = Vvalidate) & !validFV2 : Vinval; 

(inputl = Vupdate) : Vinval; 

(inputl = Fupdate) : Vinval; 

SMV input for Coda+. Figure continues on next page. 
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MODULE client(input, failure) 

VAR 
out :{0, Ffetch, Fvalidate, Fupdate, Vfetch, Vvalidate, Vupdate}; 

Fbelief :  {valid, suspect, nofile}; 

Vbelief :  {valid, suspect, nonumber}; 

ASSIGN 
init(Fbelief) := {nofile, suspect}; 

next(Fbelief) := 

case 

(Fbelief = nofile) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

init(Vbelief) 

next(Vbelief) 

valid) 

valid) 

valid) 

valid) 

valid) 

valid) 

1: Fbelief; 

esac; 
:= {nonumber, suspect}; 

: nonumber) & (input = Fval) : valid; 

= nonumber) & (input = Fval) : valid; 
= nonumber) & (input = Finval) : nofile; 

= suspect) & (input = Fval) :  valid; 
= suspect) & (input = Finval) : nofile; 

nonumber) & failure :  suspect; 

nonumber) & (input = Finval) : nofile; 

valid) & failure :  suspect; 

valid) & (input = Finval) : nofile; 

suspect) & failure :  suspect; 
suspect) & (input = Finval) :  nofile; 

case 
(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 

(Fbelief = valid) & (Vbelief = 
(Fbelief = valid) & (Vbelief = 

(Fbelief = suspect) & (Vbelief 

(Fbelief = suspect) & (Vbelief 

(Fbelief = valid) 
(Fbelief = valid) 

(Fbelief = valid) 

(Fbelief = valid) 

1 : Vbelief; 

esac; 

= suspect) & (input 

= suspect) & (input 

= suspect) & (input 

nonumber) & (input 
valid) & failure : 

valid) & (input = F 
valid) & (input = V 

= valid) a (input = 

= valid) a failure 

(Vbelief = suspect) a failure 

(Vbelief = suspect) a (input = 

(Vbelief = suspect) a (input = 

(Vbelief = suspect) & (input = 

= Vval) :  valid; 

= Finval) : nonumber; 

= Vinval) : nonumber; 

= Vval) : valid; 

suspect; 

inval) : nonumber; 

inval) : nonumber; 

Vinval) : nonumber; 

suspect; 

suspect; 

Finval) : nonumber; 

Vval) : valid; 

Vinval)   :     nonumber; 

SMV input for Coda+. Figure continues on next page. 
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1        v 

init(out) := 0; 

next(out) := 

case 

failure : 0; 

(Fbelief = nofile) :  {Ffetch, 0}; 

(Fbelief = suspect) & !(Vbelief = valid) :  {Fvalidate, 0}; 

(Fbelief = valid) & (Vbelief = nonumber) :  {Vfetch, 0}; 

(Vbelief = suspect) : {Vvalidate, 0}; 

(Fbelief = valid) :  Fupdate; 

(Vbelief = valid) : Vupdate; 

1 :  0; 

esac; 

MODULE env 

VAR 
failurel : boolean; 

failure2 : boolean; 

ASSIGN 

init(failurel) := 0; 

next(failurel) := 

case 

!failurel :  {0,1}; 

1 :  1; 
esac; 

init(failure2) := 0; 

next(failure2) := 

case 

!failure2 :  {0,1}; 

1 : i; 
esac; 

Figure 17: SMV input program for Coda+ 
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-- specification AG  (Server.Fbeliefl = nocall)-> AX  (Clie...     is true 
resources used: 
user time:     0.7 s,  system time:     0.0833333 s 
BDD nodes  allocated:    6491 
Bytes allocated:     917504 
BDD nodes representing transition relation:     1572 +  1 
reachable states:    43684 (215-4148) out of 2.54016e+07 (224-5984) 

Figure 18: SMV output for Coda+ 

{valid, suspect, nof ile}. The other belief is about the validity of the volume version number and 
ranges over {valid, suspect, nonumber}. The belief nonumber indicates that there is no volume 
version number in cache. 

Figure 18 gives the output of Coda+.   SMV indicates that the cache coherence invariant is 
satisfied. The SMV program for Coda+ has 43,684 reachable states and runs in 0.7 seconds. 

5.     Discussion 

The difficulty in model checking software systems is that software systems are not, in general, 
finite state machines. To overcome this problem, we abstract systems to make them finite state. In 
this paper we checked abstract finite models of the cache coherence protocols for the Andrew File 
System and the Coda file system. However, we also performed other abstractions on these models 
to reduce the size of the resulting SMV programs even further. Section 5.1 is an overview of these 
abstractions. 

In Section 5.2, we give the general method we used to transform models represented as finite 
state machines into SMV programs. 

5.1.     Abstractions 

In this section, we consider different aspects of our models and present the abstractions performed 
for each aspect. These aspects are the number of clients and servers, beliefs, file validity, transmis- 
sion of messages and failures. The abstractions described are all application-specific. 

5.1.1.     One server, one client, one file 

The models we give have one server, at most two clients, one file and one volume version number. 
However, the actual protocols were designed for an arbitrary number of servers and clients. We 
appeal to the generalization rule from logic to justify this abstraction since our property is of the 
form \fx.P(x): 

P(a) 
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Vx.P{x) 

5.1.2.    Beliefs 

The state variable belief really represents two beliefs, one is about the presence of the file in the 
client's cache, the other is about its validity. The belief valid means that the file is present in the 
cache and it is valid; suspect means the file is present but there is no belief about its validity; 
nof ile means there no file in cache and thus no belief about its validity. 

We could have represented these two beliefs using two state variables, but using only one sim- 
plifies the SMV programs. 

5.1.3.    File Validity 

We abstract from the file by not representing it. We also do not represent the client's cache that 
holds the file. These are reasonable abstractions because the value of the file is not relevant to our 
cache coherence invariant. We perform this abstraction having in mind the property to be checked. 

We also do not represent the timestamp associated with each file. However the server needs to 
determine the validity of a file when the client requests a validation for an existing file. The server 
accomplishes this by using a boolean variable valid-file which is set to 0 or 1 nondeterministically. 
The computation tree for the system then contains both possibilities (valid or invalid file) and both 
possibilities are checked by SMV. 

5.1.4.     Transmission of messages 

Modules in SMV can be thought of as hardware modules connected together with wires. We use 
these connections between the client and the server module to transmit symbolic messages. 

We represent transmission delays using the one-step delay, between cycles, inherent in SMV. 
This abstracts away from an explicit representation of transmission delay. It also abstracts the 
exact amount of time due to transmission delays. One step stands for any period of time. This 
abstraction is possible because our cache coherence invariant is not related to the exact amount of 
time a transmission delay could take. 

5.1.5.    Failures 

We abstract from all types of failures that can occur in a distributed system by having only two 
variables f ailurel and f ailure2 (AFS2 and Coda+). If any of these variables is set to 1, that 
indicates a failure of any type between the server and the corresponding client. 
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5.2.     General Method 

The abstractions mentioned above allow us to reduce the size of our models.  In this section, we 
present the general method we used to transform these models into SMV programs. 

5.2.1.    Decomposing the System 

The first step in transforming a model into an SMV program is to decompose the system into 
convenient subsystems. If we did no decomposition, then we would have to specify the state diagram 
for the whole system, which could be extremely large. Decomposition allows us to describe the 
state diagrams for the subsystems only. In our examples, we used a natural structuring based on 
separating clients and servers into different modules and isolating the environment which causes 
failures into a separate module. This structuring is very similar to decomposition in hardware 
applications. We can think of clients and servers as hardware modules connected with wires. 
Although in this application decomposition seems trivial, in more complex systems a more complex 
decomposition may be needed. 

5.2.2.     Defining State Diagrams 

The second step consists of defining the state diagrams for each subsystem. This task is accom- 
plished by finding first the relevant state variables. These may be found using CTL formulae that 
describe the properties of the system. In fact, the process of defining formally these properties helps 
to identify the essential state variables. In our examples, the essential state variable is belief. 
The task of defining formally the cache coherence invariant and finding this state variable had been 
done by Mummert, Wing and Satyanarayanan [9]. 

5.2.3.     SMV modules 

Finally, the SMV module system allows us to describe finite state machines. It is helpful to think 
about SMV modules as hardware structures. In fact, each module can be represented as a Moore 
machine. In a Moore machine, the state is usually implemented with latches and represents the 
current values of the state variables. A logic block is used to compute the next values of the state 
variables. A module in the SMV input language is roughly a specification of the logic block for 
each state variable. The description of the Moore machine for a module represents its finite state 
diagram. 

6.     Related Work 

We used application-specific abstraction mappings to reduce the size of our models. Other ap- 
proaches to reduce hardware or software systems state spaces consist of exploiting symmetries and 
using compositional reasoning. The first subsection describes these approaches. 
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We use SMV directly to describe our abstract models. Another approach consists of using a 
specification language and mapping that language to the input language of a model checker. The 
second subsection describes these methods. 

6.1.    Reducing the State Space 

6.1.1. Exploiting Symmetries in the Systems 

In the hardware domain, Ip and Dill [4] exploit symmetries to reduce the size of systems. They 
make symmetries easy to detect by introducing a new data type scalarset, a finite and unordered 
set, to their description language. They have extended their Murp verifier to generate reduced 
state spaces. This method can also reduce infinite domains to finite domains. They call this 
property data saturation. 

In the software domain, Jackson [5] exploits symmetry of mathematical relations. He analyzes Z 
specifications, based on his relational calculus, using model checking. In his approach, a state that 
can be shown to be symmetrical to another state, which has been already checked, is guaranteed 
not to have an error. 

For the examples that we considered, we eliminated any form of symmetry by considering only 
one server, one client and one file. For AFS2 and Coda+ we have two identical clients and this 
adds a certain amount of symmetry in the models. Indeed, we could have eliminated one of the 
clients and replaced it with a module that only updates the file. The reason why we kept the two 
clients is that they came "for free" in the SMV system. The two clients are instances of the same 
module. 

6.1.2. Compositional Reasoning 

Compositional reasoning exploits the natural decomposition of a system into simpler components. 
The components are model checked separately and therefore the verification of the system as whole 
is greatly simplified. 

In the hardware domain, Grumberg and Long use compositional reasoning and Pnueli's Assume- 
Guarantee paradigm to implement a verifier system, which they use for the verification of a CPU 
controller [3]. In the Assume-Guarantee style of reasoning, when a component is checked, we 
assume that the environment behaves in a certain manner. If the other components in the system 
guarantee this behavior, then the property is satisfied by the system. 

In the software domain, Ostroff uses compositional reasoning to model check real-time reactive 
systems. He uses the StateTime toolset and the temporal logic RTTL, to verify compositionally a 
real-time resource allocation problem [10]. 

In our approach, we model check highly abstracted models of systems. These models are small 
enough that they can be handled by SMV directly. Therefore, we check properties about the entire 
system, without decomposing it. SMV does not support either kind of compositional reasoning. 
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6.2.     Using a Specification Language 

In the software domain, two approaches in verification consists of using a specification language to 
describe software systems and map the specifications to a model checker's input language. 

Jackson [5], as mentioned above, uses a subset of the specification language Z, that is based 
on his relational calculus. Atlee and Gannon verify properties of event-driven systems using the 
SCR tabular requirements language [1]. They show how to represent any specification written in 
a subset of SCR as a finite state machine. They check an automobile cruise control system and a 
water-level monitoring system with this approach. 

The advantage of using a specification language is that the mapping between these specifications 
and the model checker's input language is done only once. However, this approach has the disad- 
vantage that the domain of systems that can be verified is restricted to the specification language's 
domain. We use model checking directly, therefore our approach is not restricted to a particular 
software domain. 

7.    Conclusion 

Model checking is a powerful tool used in hardware verification. By using judiciously defined 
abstraction mappings, this technique can also be applied to software systems. The critical part 
of this approach is the process of transforming software systems into finite state machines small 
enough for model checking. Once these finite abstractions are defined, transforming them into 
input in a form required by a tool like SMV, is not a difficult task since a knowledge of how the 
tool works is not required. 

More case studies will allow us to discover other kinds of abstractions and to demonstrate the 
utility of model checking for verifying software systems in general. 
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